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On the Polynomials Orthogonal on Regular Polygons
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The two-parameter Pastro�Al-Salam�Ismail (PASI) polynomials are known to
be bi-orthogonal on the unit circle with continuous weight function when 0<q<1.
We study the case of q a root of unity. It is shown that corresponding PASI poly-
nomials are orthogonal on the unit circle with discrete measure located on the
vertices of the regular N-gon. Cases leading to a positive weight function are analyzed.
In particular, we obtain trigonometric analogs of the Askey�Szego� polynomials
which are orthogonal on regular N-gons with positive weight function. � 1999
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1. BI-ORTHOGONAL POLYNOMIALS AND THEIR
SIMPLEST PROPERTIES

The polynomials which are orthogonal on the unit circle were introduced
by Szego� [21] and are known to possess many interesting properties
analogous to those for the polynomials orthogonal on the real interval.

One of their main properties is the recurrence relation

Pn+1(z)=zPn(z)&:nPn*(z), P0(z)=1, (1.1)

where :n=&Pn+1(0) are so-called reflection (recurrence) parameters and
the polynomial Pn*(z) is defined as Pn*(z)=znP� n(1�z). It can be shown (see,
e.g., [10, 13]) that if the recurrence coefficients satisfy the condition
|:n |<1 then there exists a unique finite positive Borel measure + on the
unit circle such that the polynomials Pn(z) are orthogonal:

|
2?

0
Pn(ei%) P� m(e&i%) d+(%)=hn $nm . (1.2)

There is an interesting extension of the recurrence relation (1.1) proposed by
G. Baxter [5]. This extension involves two sets of the polynomials Pn(z)
and Qn(z),
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Pn+1(z)=zPn(z)&:nznQn(1�z)

Qn+1(z)=zQn(z)&;nznPn(1�z) (1.3)

P0(z)=Q0(z)=1,

where :n , ;n are (complex) recurrence coefficients. It is expected that under
some conditions for recurrence coefficients the recurrence system (1.3) leads
to the polynomials which are biorthogonal with some measure on the unit
circle.

The pair of polynomials Pn(z), Qn(z) is closely connected with so-called
Laurent orthogonal polynomials [15, 17, 18]. Namely, one can introduce
moments cn defined for all integers n through some linear Laurent func-
tional L[zn]=cn , n=0, \1, \2, ... . Then one can construct polynomials
Pn(z) satisfying the orthogonality property

L[z& jPn(z)]=0, 0� j<n. (1.4)

It is easily shown that the orthogonality relation (1.4) can be rewritten in
terms of the bi-orthogonality relation

L[Pn(z) Qm(1�z)]=0, m{n, (1.5)

where the polynomials Pn(z) and Qm(z) satisfy the recurrence relations
(1.3). Vice versa, it can be proven [15] that the recurrence relations (1.3)
lead to existence of a linear Laurent functional L providing the bi-ortho-
gonality condition (1.5) (an analogue of the Favard theorem for the Laurent
polynomials).

More general systems of bi-orthogonal rational functions (instead of
polynomials) are currently being intensively studied (see, e.g., [6, 16],
where many interesting results including analogues of the Favard theorem
are contained).

In [1, 18] a concrete two-parameter system of polynomials (satisfying
(1.3)) which are bi-orthogonal on the unit circle was studied. The ortho-
gonality relation for this system arises from a special kind of Ramanujan
q-beta integral. The corresponding polynomials are expressed in terms of
basic hypergeometric functions (see the next section) with the base q satis-
fying the condition 0<q<1. When two parameters of the polynomials
coincide with one another, then so-called Askey�Szego� polynomials on the
unit circle [2] are obtained.

An interesting problem arises if we ask what happens when q becomes
a root of unity: qN=1. Then it can be easily shown that only finite-dimen-
sional polynomials are possible, because otherwise the basic hypergeometric
function is not defined for n>N. Hence the corresponding measure should
contain only a finite number of points of increase. In this case we need
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general theorems concerning finite bi-orthogonality for the polynomials
defined by the recurrence system (1.3). Earlier we considered finite ortho-
gonality for the Askey�Wilson polynomials for q a root of unity [19].

Our preliminary result will be an analog of the Christoffel�Darboux
formula.

Proposition 1. Let Pn(z), Qn(z) be two systems of the polynomials
satisfying the recurrence system (1.3) with arbitrary complex coefficients
:n , ;n . Then the following identity takes place,

Pn+1(x) Qn(1�y)&(x�y)n Pn+1( y) Qn(1�x)
hn

=(x& y) :
n

k=0

Pk(x) Qk(1�y)
hk

,

(1.6)

where

hn= `
n&1

k=0

(1&:k;k), h0=1. (1.7)

Proof. Denote

A&1=0, Ak(x, y)= y&k Pk+1(x) Qk*( y)&Pk+1( y) Qk*(x)
hk

,

k=0, 1, 2, ...,

where (by definition) Qk*(x)=xkQk(1�x). From the recurrence relations
(1.3) we have

Ak(x, y)&Ak&1(x, y)=(x& y)
Pk(x) Qk(1�y)

hk
. (1.8)

Then summing (1.8) from k=0 to k=n we arrive at the identity (1.6).

In fact the formula (1.6) was derived by G. Baxter [5] in a somewhat
different form (see his formula (2.5)).

The formula (1.6) is sufficient to state the following general theorem
concerning the finite bi-orthogonality property:

Theorem 1. Under the conditions of Proposition 1 assume additionally
that

(i) hn {0, n=0, 1, ..., N&1; hN=0 (i.e., :N&1 ;N&1=1);

(ii) all the zeros zs , s=0, 1, ..., N&1 of the polynomial PN(z) are
simple.

3POLYNOMIALS ORTHOGONAL ON POLYGONS



Then the following bi-orthogonality relations take place,

:
N&1

s=0

ws Pn(zs) Qm(1�zs)=hn $mn , (1.9)

:
N&1

s=0

w~ s Pn(1�zs) Qm(zs)=hn $mn , n, m=0, 1, ..., N&1, (1.10)

where the weight functions have the expressions

ws=
hN&1

QN&1(1�zs) P$N(zs)
, (1.11)

w~ s=
hN&1

PN&1(zs) Q$N(1�zs)
. (1.12)

Proof. From the Christoffel�Darboux identity (1.6) and its convolution
form (i.e., when x � y) we get the relation

:
N&1

k=0

Pk(zs) Qk(1�zt)
hk

=\s $st , k, s, t=0, 1, ..., N&1, (1.13)

where

\s=
QN&1(1�zs) P$N(zs)

hN&1

(1.14)

and zs are (simple) zeros of the polynomial PN(z). By condition (i) of the
theorem hk {0, k=0, 1, ..., N&1. Moreover \s {0, s=0, 1, ..., N&1.
Indeed, P$N(zs){0 because all the zeros zs are simple; if one assumes that
QN&1(1�zs)=0 then it is easy to show from the recurrence relation (13)
that PN&1(zs)=PN&2(zs)= } } } =P0(zs)=1=0, which is impossible. Hence
\s {0, s=0, 1, ..., N&1. This allows us to introduce two N_N matrices, A
and B, with entries Ask=Pk(zs)�hk , Bks=Qk(1�zs)�\s ; k, s=0, 1, ..., N&1.
The relation (1.13) can be rewritten in matrix form as

AB=I, (1.15)

where I is the identity matrix. The relation (1.15) means that both matrices
A and B are nondegenerate and that they are reciprocal to one another.
Hence BA=I, which is equivalent to the orthogonality relation (1.9). The
relation (1.10) is obtained from the symmetry between polynomials Pn(z)
and Qn(z) and from the observation that under the condition hN=0 the
zeros of the polynomial QN(z) coincide with 1�zs , s=0, 1, ..., N&1. Hence
the theorem is proven.
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Remark. The relation (1.9) provides a concrete realization of the Laurent
functional L and bi-orthogonality relation (1.6). The additional condition (ii)
is essential, because for generic (complex) recurrence coefficients :n , ;n the
polynomials PN(z) may have multiple zeros. Hence in any concrete case
one should first verify whether the condition (ii) is satisfied. In the next
section we check this condition using an explicit expression for correspond-
ing polynomials PN(z). The question under which restrictions upon the
coefficients :n , ;n the zeros are simple is an interesting open problem. One
such restriction is well known: ;=:� n , |:n |<1. This restriction corresponds
just to the polynomials (1.1) orthogonal on the unit circle (for the proof
that all zeros are simple see, e.g., [4, 13]).

Corollary 1. If :n=;n , n=0, 1, ..., N&1, then Qn(z)=Pn(z), the
zeros of the polynomial PN(zs) are symmetric (i.e., for any root zs there
exists the root 1�zs), and two bi-orthogonal relations (1.9), (1.10) are reduced
to the orthogonal relation

:
N&1

s=0

ws Pn(zs) Pm(1�zs)=hn $nm , (1.16)

where the weight function is

ws=
hN&1

PN&1(1�zs) P$N(zs)
. (1.17)

Corollary 2. If ;n=:� n then Qn(z)=P� n(z) and the recurrence system
(1.3) coincides with (1.1). The orthogonality relation in this case is written as

:
N&1

s=0

ws Pn(zs) P� m(1�zs)=hn $nm , (1.18)

where

ws=
hN&1

P� N&1(1�zs) P$N(zs)
. (1.19)

Remark. In Corollary 2 the recurrence coefficients :n need not satisfy
the condition |:n |<1. Hence the zeros of the polynomial PN(z) need not
lie on the unit circle. For example, the zeros may be located on the real interval
[18, 20, 22]. The orthogonality relation (1.19) is valid for all possible
locations of the zeros (with the only assumption that all the zeros are
simple).

In the next sections we apply these general results to derive concrete
examples of the orthogonality relation for q a root of unity. In all examples
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presented the zeros lie at the vertices of a regular N-gon. Hence we get
non-trivial examples of polynomials which are (bi) orthogonal on regular
polygons. Perhaps these examples are new. Note that polynomials in two
variables orthogonal on the interior of regular polygons with continuous
measure were considered by Dunkl [9].

2. THE ZEROS AND ORTHOGONALITY FOR
PASTRO�AL-SALAM�ISMAIL POLYNOMIALS

In [18] a very interesting system of polynomials Pn(z), Qn(z) (contain-
ing two real parameters) which are bi-orthogonal on the unit circle was
discovered. In [1] this system was slightly generalized to generic complex
parameters. We will call corresponding objects Pastro�Al-Salam�Ismail
(PASI) polynomials.

The recurrence coefficients of the system (1.3) are defined as

:n=&q(n+1)�2 (b; q)n+1

(aq; q)n+1

, ;n=&q (n+1)�2 (a; q)n+1

(bq; q)n+1

, (2.1)

where a, b are arbitrary complex parameters and q is a real parameter such
that |q|<1, and (a; q)n=(1&a)(1&aq) } } } (1&aqn&1) is the q-shifted
factorial.

The explicit expression for the polynomials Pn(z), Qn(z) is [1]

Pn(z; a, b)=qn�2 (b; q)n

(aq; q)n
:
n

k=0

(q&n; q)k (aq; q)k

(q; q)k (q1&nb&1; q)k
(zq1�2�b)k, (2.2)

Qn(z; a, b)=Pn(z; b, a). (2.3)

Al-Salam and Ismail showed [1] that under the conditions |aq1�2|<1
and |bq1�2|<1 the polynomials Pn(z) and Qn(z) are bi-orthogonal on the
unit circle with some continuous measure.

In this section we consider the case where q is a primitive N th root of
unity, i.e.,

q=exp(2i?M�N), (2.4)

where M and N are two co-prime integers (M<N). We will assume also
that M is odd (in particular, we will consider also the simplest case M=1).

The condition (i) of Theorem 1 is fulfilled provided aN, bN, (ab)N{1.
Assuming that these inequalities are valid let us find the zeros of the poly-
nomial PN(z). For this goal note that the explicit expression (2.2) is valid
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for n=0, 1, ..., N&1. For n=N this expression is not correct because
(q&N; q)N=(q; q)N=0 and hence we have indeterminacy in the last term of
the sum. However, this indeterminacy can be avoided by the limiting
procedure: put q=exp(=+2i?M�N) and take the limit = � 0. Then

lim
= � 0

(q&N; q)N

(q; q)N
=&1

whereas other terms in the sum (2.2) (except of first one) are zero. So we
have for PN(z) a simple expression

PN(z)=zN&
1&bN

1&aN (2.5)

(in (2.5) we used an obvious formula (a; q)N=1&aN).
In what follows we restrict ourselves to the relation

b=aq j, j=0, 1, ..., N&1. (2.6)

Then the zeros of the polynomials PN(z) and QN(z) coincide with the roots
of unity

zs=qs, s=0, 1, ..., N&1 (2.7)

and obviously

P$N(zs)=Q$N(zs)=Nq&s. (2.8)

The most non-trivial part of the weight function (1.11) is evaluation of
QN&1(1�zs) which is reduced to calculation of the following sum:

S(s, j)= :
N&1

k=0

(aq1+ j; q)k

(q2�a; q)k
(q1�2&s�a)k . (2.9)

Lemma 1. The sum S(s, j) is

S(s, j)=Aj
(q3�2�a; q)s as

(aq1�2; q)s (aq&s&1�2; q) j+1

, (2.10)

where

Aj=&q1�2 (&q1�2; q1�2)N&1 (a; q1�2)N&1 (a2�q; q) j+1

(a; q) j+1 (a; q)N&1

. (2.11)

The proof of this lemma is contained in the Appendix.
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From this lemma we immediately find the expression for the weight
function

ws=B
(aq1�2; q)s (aq&1�2&s; q) j+1

(q3�2�a; q)s
(q�a)s,

s=0, 1, ..., N&1, j=&1, 2, ..., N&2, (2.12)

where

B=
(1+aN)(1&a)(a; q) j+1

(a2�q; q) j+2 (&q1�2; q1�2)N&1 (a; q1�2)N&1

. (2.13)

The formula (2.12) is valid for all complex values of a except roots of
unity: aN{1. In particular, for a � 0 we get the case of Rogers�Szego�
polynomials with the recurrence coefficients

:n=;n=&q(n+1)�2.

In this limit the weight function (2.12) becomes

ws=(&1)s q&s2�2

(&q1�2; q1�2)N&1

.

The normalization condition �N&1
s=0 ws=1 leads to the identity

:
N&1

s=0

(&1)s q&s2�2=(&q1�2; q1�2)N&1 . (2.14)

The identity (2.14) was firstly derived by Gauss in 1811; it represents the
transformation for the famous ``Gauss sum'' [7]. The same Gauss sum
arises also in the theory of the Askey�Wilson polynomials for q a root of
unity (see, e.g., [19]).

3. THE CASE OF REAL POLYNOMIALS WITH
POSITIVE WEIGHT FUNCTION

So far, we considered the case when a is an arbitrary complex parameter.
In this section we consider a special case where a=q#, where # is a real
parameter satisfying the inequality

&1�2<#<1�2. (3.1)
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We restrict ourselves with the symmetric case j=0. Then both the recurrence
coefficients are real and coincide with one another

:n=;n=&
sin(?M#�N)

sin(?M(n+#+1)�N)
. (3.2)

Moreover, if one chooses M=1 then |:n |<1, n=0, 1, ..., N&2. Hence,
by the ``Favard theorem'' [10, 13] we conclude that the weight function ws

for the corresponding polynomials Pn(z) should be positive, ws>0,
s=0, 1, ..., N&1. Moreover, it is obvious from the reality of :n that the
polynomials Pn(z) have real coefficients.

Thus we obtain that the polynomials Pn(z) are orthogonal on the regular
N-gon

:
N&1

s=0

ws Pn(qs) Pm(q&s)=hn $mn . (3.3)

After some manipulations, the expression (2.12) for the weight function
ws can be transformed in our case to a more attractive form

ws=BN sin |(s&#+1�2) `
s

k=1

sin |(k+#&1�2)
sin |(k&#+1�2)

, (3.4)

where

BN=
22&N

- N

tan |# cos ?#

sin |(1&2#)
`

N&1

k=1

1
sin |(#+(k&1)�2)

, (3.5)

and |=?�N. Note that we used an elementary trigonometric identity

`
N&1

k=1

sin
|k
2

= `
N&1

k=1

cos
|k
2

=21&N
- N (3.6)

in order to derive the expression (3.5) from (2.13).
The form (3.4) shows directly that indeed ws>0 provided the restriction

(3.1) is fulfilled. The normalization condition

:
N&1

s=0

ws=1 (3.7)

leads to a (perhaps new) trigonometric identity containing one parameter #.
Note that in the limit # � 0 (this transition is needed because formally :n

is not defined for #=0) we obtain well-known finite-dimensional Chebyshev
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polynomials on the circle with the recurrence parameters :n=0, n=0, 1, ...,
N&2; :N&1=1. These polynomials have a trivial weight function ws=1�N
which can be obtained from (3.4) by the above mentioned limiting transition.

Note also that in the limit N � � we get circle analogs of the ultra-
spherical polynomials (see, e.g., [12, 14]) having the recurrence parameters

:n=&
#

n+#+1
.

In this section we considered some one-parameter class of the circle analogs
of the Askey�Wilson polynomials for q a root of unity. Generic (4-parameter)
circle analogues of the Askey�Wilson polynomials (for real values of q) are
studied in [23].

4. EXCEPTIONAL CASES OF PASI POLYNOMIALS

So far, we considered the case when aN, bN, (ab)N{1. These conditions
are needed in order for the recurrence parameters :n , ;n and explicit
expressions (2.2) to be defined for all n=0, 1, ..., N&1. What happens
when these conditions are violated?

In this section we consider an exceptional case when the condition

ab=q&K, K=2, 3, ..., N&1 (4.1)

is valid. We can choose b as arbitrary complex parameter such that bN{1.
From (4.1) and (2.1) we conclude that hK=0, hence the maximal order

of the polynomials should be K=N&m. The corresponding weight function
is written as (see (1.11))

ws=
hK&1

QK&1(1�zs) P$K (zs)
, (4.2)

where zs , s=0, 1, ..., K&1 are the zeros of the polynomial PK (z). Recall
that orthogonality of the corresponding polynomials is valid only if the
zeros zs are simple. Indeed it is easy to find these zeros directly from the
explicit expression (2.2) using the q-binomial theorem,

zs=bqs+1�2, s=0, 1, ..., K&1. (4.3)

For arbitrary b the zeros zs are simple and lie at the K vertices of regular
N-gon with radius |b|.
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For the P$K (zs) one can easily obtain the expression

P$K (zs)=bK&1q&s+(K&1)�2 (q; q)K&1 (q; q)s

(q&L; q)s
. (4.4)

For QK&1(1�zs), using the q-analog of the Chu�Vandermonde formula
we can derive the expression

QK&1(1�zs)=(&b)&K+1 q(1&K 2)�2 (q; q)K&1 (bq)s

(bq; q)K&1

. (4.5)

Combining these results, we get the final formula for the weight function

ws=
(q&K+1; q)s b&s

(b&1q&K+1; q)K&1 (q; q)s
, s=0, 1, ..., K&1. (4.6)

It is interesting to note that the normalization condition for the weight
function (4.6) is nothing else than the q-binomial theorem [11],

:
K&1

s=0

(q&K+1; q)s b&s

(q; q)s
=(b&1q&K+1; q)K&1 . (4.7)

Consider a special case when a=b=&q&K�2. Then we have symmetric
polynomials (Pn(z)=Qn(z)) with the reflection parameters

:n=&
cos(|K�2)

cos |(n+1&K�2)
, (4.8)

where |=?M�N.
For the weight function in this case we have

ws=AK `
s

k=1

sin |(K&k)
sin |k

, (4.9)

where

A2j+1=4& j `
j

m=1

cos&2 |( j&m+1�2); A2j=2&141& j `
j&1

m=1

cos&2 |m.

(4.10)

When M=1 then |:n |<1, n=0, 1, ..., K&1 and hence the weight func-
tion is positive on the unit circle as is seen from (4.9). However, there are
other possibilities for choosing M leaving the weight ws positive. For example,
if M<N�K then obviously ws is still positive. Moreover we can take the
limit N, M � � fixing K. Then we get the PASI polynomials having the
same reflection parameters (4.8) but with arbitrary real |<?�K.
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For K=N&1, M=1 we have a very simple formula for the weight
function

ws=tan
|
2

sin |s, s=1, 2, ..., N&1. (4.11)

Corresponding polynomials are orthogonal on the vertices of the regular
N-gon zs=qs, s=1, 2, ..., N&1 with the only excluded point z=1. Note
that despite the simple expression for the weight function (4.11) the corre-
sponding polynomials Pn(z) have a non-elementary expression (2.2).

For K=N&2, M=1 we obtain a weight function of the form

ws=
2

N cos |
sin |s sin |(s+1), s=1, 2, ..., N&2. (4.12)

In this case the polynomials Pn(z) have the elementary expression

Pn(z)=
qn�2

1&qn+1 \(zq&1�2)n+1&1
zq&1�2&1

&q
(zq1�2)n+1&1

zq1�2&1 + . (4.13)

5. APPENDIX

In this Appendix we prove Lemma 1. From the definition of the sum
(2.9) we easily derive the recurrence relation

S(s, j)=
S(s, j&1)&aq jS(s&1, j&1)

1&aq j . (5.1)

Hence, evaluation of S(s, j) can be reduced to evaluation of S(s, &1).
For the S(s, &1) we have

S(s, &1)= 281 \ q, a
q2�a

; q; q1�2&s�a+ . (5.2)

Now observe from the theory of q-ultraspherical polynomials (see, e.g., [3,
11]) that

281 \ q&n, a
q1&n�a

; q; q1�2&s�a+
= p&n(s+1) (a2; q)n (&p; p)n

(a; q)n (&a; p)n
483 \ p&n, p&s, ps+1, apn

&(ap)1�2, (ap)1�2, &p
; p; p+ , (5.3)

where p=q1�2=exp(i?M�N), M is odd.
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Substituting n=N&1 into (5.3) we see that (as p&N+1=&p) the right-
hand side of (5.3) is reduced to balanced 3 82 series which can be evaluated
using the q-Saalschu� tzian formula [11]. So we get the expression

S(s, &1)=&p
(&p; p)N&1 (a; p)N&1

(a; q)N&1

as( p3�a; q)s

(ap; q)s
. (5.4)

Then the final formula (2.10) can be proven by induction using (5.1).
Note that this expression can be further simplified using an obvious identity,

(a; q)N&1=
1&aN

1&a�q
. (5.5)
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